Random Graphs
 Exercise Sheet 1

Question 1. Give an example of a set of events $\left\{A_{i}: i \in I\right\}$ which are pairwise independent, but not mutually independent.

Give an example of a collection of random variables $\left\{X_{i}: i \in I\right\}$ which are pairwise independent, but not mutually independent.

Give an example of two random variables X and Y such that $\mathbb{E}(X Y) \neq \mathbb{E}(X) \mathbb{E}(Y)$.

Question 2. Calculate the following probabilities:

- $\mathbb{P}(G(4,1 / 2)$ has 2 edges $)$;
- $\mathbb{P}(G(4,1 / 2)$ has 6 edges $)$;
- $\mathbb{P}(G(4,1 / 2)$ is connected $)$.

Question 3. Let $\left(G_{1}, \ldots, G_{\binom{n}{2}}\right)$ be the sequence of random variables given by the random graph process in the lecture. Show that $G_{m} \sim G(n, m)$ for each m.

Question 4. Show that with high probability $\mathbb{P}(G(n, p)$ has diameter $\leq 2)$, for constant p.

Question 5. Show directly, that is without using any relation between $G_{n, m}$ and $G_{n, p}$, that every monotone graph property has a threshold in $G_{n, m}$.
(Hint: It may be useful to relate the random variable $G_{n, k m}$ to the random variable given by the union of k independent copies of $G_{n, m}$).

Question 6 (Harris' inequality). Let X and Y be increasing graph parameters, i.e., $X(G) \leq X(H)$ whenever $G \subseteq H$. Show that

$$
\mathbb{E}_{G(n, p)}(X Y) \geq \mathbb{E}_{G(n, p)}(X) \mathbb{E}_{G(n, p)}(Y)
$$

(Hint: Induct on the number of edges which determine the value of X and Y)

